板金加工:アーク溶接について
本記事では、板金加工における「アーク溶接」についてご紹介しています。ぜひご覧ください。
アーク溶接(Co2、Tig、Mig、MAGなど)を用いた接合時には、主要な溶接条件である電流、電圧、シールドガス流量、溶接姿勢などを最適な条件で設定し施行しても、溶接ビード上に割れ、ピンホールなどの欠陥が発生することがあります。このような溶接欠陥は接合強度に影響を与え、製品の設計強度が不十分になる等の問題をひき起こし、場合によっては人身事故につながる深刻な現象です。
今回の記事では、アーク溶接における溶接欠陥の発生原因を紹介します。
まずは、溶接欠陥の種類と、その主な原因についてご説明いたします。
ブローホールとは、窒素、一酸化炭素、水素等のガス成分などの巻き込みにより発生する溶接金属内の気孔のことです。溶接中のガスは金属内で、温度の低下とともに徐々に放出され、凝固する過程で急激に多量のガスが凝固界面に放出されます。大部分は大気中に逃げますが、逃げ遅れて凝固し金属内にトラップされた気孔は「ブローホール」と呼ばれます。また、気孔が溶接部の表面まで達し、開口した場合は「ピット」と呼びます。
アークや溶融池をシールドガスが十分に覆うことができない状態になると、空気中の窒素が溶融金属中に溶込みます。窒素は高温では溶融金属中に原子の形で存在しますが、冷却時に窒素分子の気体となり、溶融金属中に窒素の気泡として現れます。
この気泡が抜けきらないうちに溶融金属が凝固するとブローホールやピットになります。主原因は、溶接部の近傍の強風や、シールドガス流量不足によりシールドガスが乱れるためです。
溶接の熱でガス化する物質が母材表面にあると、ガス化したものを巻き込みブローホールが生じやすくなります。錆や油分は熱でガス化しやすい物質です。
アルミニウム材は酸化皮膜に含まれる不純物や大気中の水分を巻き込むなどして、溶融金属中に水素が残留しやすい傾向があります。
アルミニウム材は高い熱伝導率により急冷凝固しやく、凝固時に水素が過剰に含まれやすいことがブローホールの発生率を上げています。
スラグ巻き込みとは、スラグが溶接金属表面に排出されず、巻き込んで凝固の途中で閉じ込めてしまったものです。
溶接スラグは、不純物の酸化物であり、通常は金属の表面に浮き出ます。
しかし、前工程でスラグの除去が不十分な状態では、スラグ酸化物が溶接金属表面に大量に含まれています。
この場合は、一部のスラグが上手く排出されず、溶接金属が凝固の途中で閉じ込められることがあります。これがスラグ巻き込みです。
溶接部に発生する割れには、高温割れと低温割れに分類され、いずれも強度を著しく低下させるため、注意が必要な溶接欠陥です。
溶接時に、溶けた金属が凝固するときに収縮ひずみに耐え切れず、割れが発生するものです。
特に鉄鋼材料母材に不純物元素のP,S,Siが多く含まれると、延性が低下するなどより凝固時の高温割れにつながります。
急熱、急冷により形成された硬化組織に、水素が徐々に集積すると、局部的に延性が低下します。
この部分には熱収縮による引っ張り残留応力が作用することが多く、水素脆化を引き起こすことで割れが発生するものです。
アンダーカットとはビード止端部で溝状にへこんでしまう欠陥です。溶接速度が速すぎ、溶着金属量が不足し、ビート止端部で凹む現象の欠陥となります。
オーバーラップとはアンダーカットと正反対にビード止端部に溢れ出てしまう欠陥です。溢れ出た部分は母材に融合しないで重なった状態になります。
溶接速度が遅すぎて、溶着金属量が過剰になり、ビード止端部に溢れ出す欠陥です。
溶込み不足とは目的の位置や深さまで溶け込まない欠陥であり、溶着していない部分が残留する欠陥です。開先残り、ルート残りと表現されることも有ります
溶接電流が低すぎるとアークの力が弱くなり、開先のルート部まで十分に溶け込ますことができなくなります。
表面欠陥は溶接施工者による目視検査のスキルを高める事により検出を可能としますが、内部欠陥の非破壊検査においては専用設備を使用する事により検出を可能とします。下記に示す検査方法については、製品の形態に応じて選定を行うため、それぞれに検査についてはエンドユーザーや顧客に要求に応じた上で選定が必要となります。
溶接部に放射線を照射しフィルムに像を映し出すことで溶接の欠陥を探し出します。溶接に欠陥がある部分は透過しやすい為フィルムには黒い像として検出されます。
X線を使用するため、被爆防止のために室内で試験をします。そのため測定物のサイズが限られます。
超音波探傷試験は溶接部分や鍛造品の内部の傷を確認す際に使用されることが多くなります。垂直探傷法や斜角探傷法という種類が存在します。
溶接の表面部分に磁束を妨害する欠陥がある場合に、外部の空間に漏れ磁束が発生します。これにより溶接欠陥を発見することができます。
ここまで、アーク溶接における溶接欠陥についてご説明してきました。ここからは、当社が持つファイバーレーザ溶接技術をご紹介します。当社は、シームトラッキング溶接工法、オンザフライ溶接工法という高度コア技術を保有しており、アーク溶接では難しい高品質かつ高速な溶接が可能となります。
シームトラッキング溶接工法とは、溶接位置を事前にモニタリングし溶接位置を追従補正することで、安定した溶接が可能となる技術です。
ファイバーレーザ溶接では、極小範囲に高出力のレーザ光を照射する事により複数部材を接合しますが、突合せ溶接・隅肉溶接の場合においては、照射位置のズレにより接合不良が発生する可能性があります。そのため、接合精度の向上のため、加工冶具により部品位置決め精度を向上させることが重要です。また、より安定的に接合するためには、ワークセットごとに溶接位置を確認する必要があります。
シームトラッキング溶接工法を活用することにより、調整作業がなくなり段取り時間の削減や安定した突合せ・隅肉溶接が可能になります。
関連情報はこちら
オンザフライ溶接工法は、溶接ロボットの動作軌跡と溶接位置を同期化し接合することにより、広範囲溶接の場合に、ロボット停止時間をなくし、溶接を最速化する技術です。
従来のファイバーレーザー溶接においては、溶接位置が多く広範囲な溶接が必要な場合、溶接位置でロボット動作を停止しレーザー光を照射するステップ&リピート工法が用いられていました。この工法ではロボットの動作が停止するため、溶接時間が長時間化していましたが、オンザフライ溶接工法により短時間での溶接が可能となります。
また、当社の高度コア技術であるシームトラッキング溶接技術と共に用いることで、高速・高精度の接合を可能にします。
関連情報はこちら
“アーク溶接における溶接欠陥とその理由”について、ご理解頂けましたでしょうか。
金属塑性加工.comを運営する高橋金属は、アーク溶接・ファイバーレーザ溶接において高い技術力を持ちます。また、当社は最先端溶接技術の研究にも力を入れており、これまで蓄積してきた知識・ノウハウを活かして、溶接欠陥を生じさせない高速かつ高品質な溶接を行っております。溶接に関するお悩みをお持ちの皆様、是非お気軽に当社にご相談ください。
本記事では、板金加工における「アーク溶接」についてご紹介しています。ぜひご覧ください。
本記事では、板金加工における「曲げ加工」についてご紹介しています。ぜひご覧ください。
本記事では、板金加工における「曲げ加工」についてご紹介しています。ぜひご覧ください。
本記事では、板金加工における「レーザタレパン複合機」についてご紹介しています。ぜひご覧ください。
本記事では、板金加工における「レーザ切断」についてご紹介しています。ぜひご覧ください。
本記事では、板金加工における「外形加工専用機」についてご紹介しています。ぜひご覧ください。
本記事では、「板金加工における部品展開」についてご紹介しています。ぜひご覧ください。
本記事では、「板金加工(工場板金)の全体像」についてご紹介しています。ぜひご覧ください。
今回は、プレス加工:冷間鍛造(後編) 複合押出し、密閉鍛造について紹介しています。ぜひご覧ください。
本記事では、プレス加工:冷間鍛造(前編) 型鍛造、前方押出し加工について紹介している記事になります。ぜひご覧ください。
本記事では、プレス加工:圧縮加工(冷間鍛造‐据え込み、修正仕上げ打ち加工)の特徴について紹介している記事になります。ぜひ最後までご覧ください!
本記事では、プレス加工:圧縮加工(冷間鍛造‐コイニング・ポンチング・刻印加工)の特徴について紹介している記事になります。ぜひ最後までご覧ください!
本記事では、成形加工(縁曲げ(フランジ成形、カール成形)、口絞り成形、矯正及び型打ち)の特徴について紹介している記事になります。ぜひ最後までご覧ください!
本記事では、成形加工(エンボス加工、バルジ張出し加工、つば出し加工)の特徴について紹介している記事になります。ぜひ最後までご覧ください!
本記事では、張出し加工と絞り加工の違いについて説明をしています。 是非、ご確認ください。
本記事では、角絞り加工時に起こる引けの抑制方法について、説明しています。是非、ご確認ください。
本記事では、深絞り加工の基礎についてご説明しています。深絞りの定義や知っておくべき数値、絞り加工油や絞り金型について解説していますので、ご確認ください。
本記事では、絞り加工のトラブル事例、割れ不良・絞りキズ・底部変形について説明しています。是非ご確認ください。
本記事では、絞り金型と絞り加工のトラブル事例について詳しく解説しています。是非ご確認ください。
本記事では、プレスの絞り加工について、プレス加工のプロフェッショナルが解説いたします。
本記事では、プレス曲げ加工の一つであるカール曲げ加工(カーリング)の種類と加工工程について、プレス加工のプロフェッショナルが徹底解説いたします。
本記事では、曲げ加工において大きな問題となるスプリングバックの原因と対策、そして曲げ加工の種類について、プレス加工のプロフェッショナルが徹底解説いたします。
プレス加工は、目的とする製品形状や品質によって分類することができ、その数は数十種類とも言われています。これらは、パンチとダイで素材を分離するせん断加工と、板材を目的の形状に変形させる塑性加工という2つに大別されます。本コラムでは、せん断加工をさらに細かく分類した8種類の加工法についてご紹介します。
精密せん断加工(英:Precision Shearing)とは、トラブルの元となるダレ・破断面・バリといった断面形状を可能な限り無くし、綺麗な切断面を得るためのプレス工法になります。本コラムでは、4つの精密せん断加工についてご紹介したうえで、その中でもファインブランキング加工と対向ダイスせん断法について深く掘り下げて解説いたします。
本記事では、パイプ加工の中でも難易度が高いとされる3次元曲げと端末加工技術について、パイプ加工のプロフェッショナルが詳しく解説いたします。
プレス加工の一つ、シェービング加工をご存じでしょうか?シェービング加工は、通常のプレス加工では得られないせん断面を得ることができる工法です。本記事では、シェービング加工と板厚の全面にせん断面を得るための加工ポイントについて、プレス加工のプロフェッショナルが徹底解説いたします。
当記事では、プレス加工の”縁切り型”について詳しく解説しております。縁切り型の特徴や種類、構造について詳しくご紹介しておりますので、ぜひご覧ください。
当記事では、プレス加工の”分断型”について詳しく解説しております。分断型を使った分断加工のポイントや加工事例についてもご紹介しておりますので、ぜひご覧ください。
当社の高度コア技術である型内ネジ転造加工技術と加工事例についてご紹介しています。生産中の動画もご確認頂けますので、是非ご覧ください!
当記事では、切り込み型について説明しています。ルーバー加工やランスロット加工についても併せて説明していますので、是非ご確認ください。
金属の溶接方法には、アーク溶接やレーザ溶接など、様々な種類が存在します。各種溶接にはメリットやデメリットがありますが、それらを把握することで、適切な溶接方法を選定でき、高品質化及び最適コストの実現が可能となります。 ここでは、様々な溶接方法のメリットとデメリットをご説明させて頂きます!
当コラムでは、QCD全ての面でメリットを提供するネットシェイプとニアネットシェイプを、実現するための理想的な加工法をご説明します。 ぜひご一読ください!
当記事では、穴抜き型についてご説明させて頂きます。
金属塑性加工.comを運営する高橋金属では、11軸・9軸・8軸の多軸溶接ロボットを保有し、大物溶接品の溶接に対応しています。また、大物製品の組立まで対応できるOEM生産体制を構築しています。大物製品のOEM委託先をお探し中の皆様、お気軽に当社に御相談ください。
当技術コラムでは、せん断加工の中で基本的な加工である打抜き加工に使用される、打抜き金型ついてご説明します。
プレス加工の分類において、「素材の分離」に属する、せん断加工を行うための切断金型についてご説明します。
今回の技術コラムでは、プレス金型の設計に焦点を当て紹介をしていきたいと思います。
金属における加工方法の一つである鏡面加工について説明します。金属塑性加工.comの視点で、詳しく解説いたしますので、参考にして頂けますと幸いです。
金属における加工方法の一つである塑性加工について説明します。金属塑性加工.comの視点で、詳しく解説いたします。
溶接方法の中でもメリットが多いとされるロボットによるファイバーレーザ溶接の課題やデメリットについてご説明します。課題を解決する当社のコア技術についてもご説明しますので、是非ご確認ください。
理想的な工法とされるネットシェイプ・ニアネットシェイプを可能とする塑性流動成型加工の一種である冷間鍛造加工についてご説明させて頂きます。
トランスファープレス加工をはじめ、プレス加工工法についてご説明します。当社の独自ラインである、3連トランスファーダンデムラインについてもご紹介しますので、是非参考にしてください。
プレスFEM解析技術、溶接熱歪解析技術を持つ当社が、CAE解析についてご説明させて頂きます。合わせて、FEM解析やFVM解析、当社のコア技術についてもご紹介します。
当社の表面処理鋼板材接合技術を用いることで、メッキを剥がさずにZAM材を溶接することが可能となります。
アーク溶接における溶接欠陥の発生原因を紹介します。